
CG-DDF Domain

Authors:

Soonhoi Ha

1. Introduction
Warning: this code is experimental and unfinished; at this point demos of interesting paral-

lel scheduling schemes for graphs with dynamic behavior are supplied, with little else.

All code generation domains included in this release assume that the dataflow graph is syn-
chronous (or, SDF), that the number of tokens consumed and produced for each star is not vary-
ing at run time. In an SDF graph, therefore, we can determine the execution order of blocks at
compile-time and minimize the runtime overhead of scheduling them. If we target a multipro-
cessor architecture, we furthermore assume that the relative execution times of blocks are
specified. We do not allow blocks with dynamic behavior such as case construct, data-dependent
iteration, and recursions. The CG-DDF domain is the code generation version of the DDF
domain (so, called CG-DDF), to overcome this limitation. Using the CG-DDF domain inside a
code generation domain, the user may want to use some predetermined dynamic constructs in
the application graph. The CG-DDF domain always resides in a code generation domain as a
wormhole: CGWormhole. Moreover, the target of the code generation domain should be a
multiprocessor target.

The dynamic constructs we support in the CG-DDF domain are case, for, do-while, and
recursion. The case construct is a generalization of the more familiar if-then-else construct.
Unlike the simulation DDF domain, the graphical topologies of these dynamic constructs are
enforced. In the simulation DDF domain, all connected SDF stars are collected to make a DDF
wormhole automatically to reduce the runtime overhead by quasi-static scheduling. In the CG-
DDF domain, however, the user should create CG-DDF wormholes explicitly, so that the graph
in the CG-DDF domain consists of only CG-DDF stars and CG-DDF wormholes. The topology
of the graph is identified with a predetermined topology of dynamic constructs supported by the
Ptolemy.

2. Target
There is only one target in the CG-DDF domain, CGDDFTarget. The CGDDFTarget is

derived from the MultiTarget class. Note that the CG-DDF domain does not change the
physical target of the outside code generation domain. Also, the code generation domain inside
the CG-DDF wormholes do not, either. Hence, we set a target parameter, inheritProces-
sors, YES meaning that the target inside a wormhole uses the same physical architecture (or
child targets) as the outside domain. The targets of all code generation domains inside CG-DDF
wormholes should be set this parameter to YES. If the parameter is set YES, the nprocs target
parameter is ignored. Here is the reason why the outside domain of the CG-DDF domain should
have a multiprocessor target: the target of the CG-DDF domain inherits the child targets of the
outside target. A single processor target does not have any child target.

CG-DDF Domain 10-2

The CG-DDFTarget has a string parameter constructType to specify which dynamic
construct the graph represents. The user has to specify one of the dynamic constructs supported:
case, do-while, for, recursion. We examine the first character (type-insensitive) of the given
string to decide the construct. By default it is set to "case". After the graph in the CG-DDF
domain is confirmed to the topology of the specified construct, the scheduler is selected automat-
ically.

3. Scheduler
Existence of dynamic constructs in a program graph keeps the user from using the static

scheduling algorithms. Some of the static scheduling algorithms are implemented in the
Ptolemy, and described in the scheduler section in the CG domain document. If an application
has dynamic behavior, the conventional solution is to discard static scheduling and incur the sub-
stantial cost of dynamic scheduling. But, dynamic scheduling is not a must in most signal pro-
cessing algorithms; thus a much simpler approach based on quasi-static scheduling is proposed.
In quasi-static scheduling, most of the scheduling decisions are made at compile-time. Some
scheduling decisions are made at run time, but only when absolutely necessary. Refer to [1] for
detailed discussion of the scheduling scheme.

The scheduling idea is as follows; We first treat each dynamic construct as a special SDF
star and use static scheduling algorithm. The SDF star from the dynamic construct is special in
the sense that it may require more than one processors to be mapped onto, and the execution
time on the assigned processors are varying at runtime (assumed fixed when we compute the
schedule). Most conventional scheduling algorithms assume that a block is assigned to a proces-
sor. Therefore, we had to modify the scheduling algorithms to support the case when some
blocks can be scheduled onto more than one processors. The scheduling results decide the
assignment and ordering of blocks on the processors (child targets). At run time, we do not
achieve the expected performance from the compile-time scheduling since dynamic constructs
will behave differently from what we assumed at compile time. Sometimes, the dynamic con-
struct will finish its execution earlier than expected, and sometimes later. Our goal is to minim-
ize the expected makespan of the program graph at run time.

We assume that the run-time behavior of each dynamic construct is known or can be
approximated with a certain probability distribution. For example, the number of iteration for
for or do-while constructs is the variable. And the recursion depth is a variable of recursion con-
struct. This information should be entered by the following CGDDF target parameters.

paramType: type of the distribution. Currently, we support "geometric" distribution, "uni-
form" distribution, and other "general" distribution specified by a table. By default, the
geometric distribution is chosen.

paramGeo: geometric constant of a geometric distribution. Its value is effective only
when the geometric distribution is selected as the paramType. If the construct is a case
construct, this parameter indicates the probability of branch 1 being taken. The branch
number stars from 0. Therefore, there are only two branches, the parameter indicates the
probability of the "TRUE" branch being taken. In case there are more than two branches,
we have to use paramFile parameter to specify the probabilities of taking each branch.

paramMin: minimum value for a uniform distribution. It is effective only when the uni-
form distribution is chosen.

Document version 1.2 12/10/92

CG-DDF Domain 10-3

paramMax: maximum value for a uniform distribution. It is effective only when the uni-
form distribution is chosen.

paramFile: file name that contains the information on the distribution. If the construct is
a case construct, each line contains the value for the probability of taking a branch num-
bered from 0. Otherwise, each line contains the integer index value and the probability for
that index. The indices should be increasing order. It is effective only when a general dis-
tribution is selected.

Based on the specified distribution of the run-time behavior, we determine the compile-
time profile, shortly profile, of each dynamic construct. The profile of a dynamic construct con-
sists of the number of processors assigned to the construct and the (assumed) execution times of
the construct on the assigned processors. Suppose we have a for construct. If the loop body is
scheduled with one processor, it takes 6 time units. With two processors, the loop body takes 3
and 4 time units respectively. Moreover, each iteration cycle can be paralleled with 1 time unit
skewed. There are four processors. Then, we have to determine how many processors to be
assigned for the construct, and how many times the loop body will be scheduled at compile time.
Assign two processors to the loop body and parallelize two iteration cycles, thus taking all 4 pro-
cessors? Or, assign one processor to the loop body and parallelize three iteration cycles, thus tak-
ing 3 processors as a whole? We have developed a systematic approach to answer these tricky
scheduling problems based on the distribution information [1]. We can manually determine the
number of assigned processors by setting fixedNum parameter of the CG-DDF target. Note
that we still have to decide how to schedule the dynamic construct with the given number pro-
cessors.

Since the gantt chart program currently implemented can not show the schedule inside the
CG-DDF wormhole, we just show the "profile" of the dynamic construct. The outside code gen-
eration domain uses that profile information of each dynamic construct (or CGWormhole) for
overall static scheduling.

4. CGDDF Stars
The CGDDF stars are the key for identifying dynamic constructs. For example, the Case

and the EndCase stars are used in the case, do-while, or recursion construct, which differ each
other by the connection topology of these CGDDF Stars and CGDDFWormholes. Therefore, if
the user wants to use one of these dynamic constructs, no need for writing a star exists.

The for construct consists of a pair of an UpSample type star and a DownSample type
star, where UpSample and DownSample are not the star name but the type of some stars. If a star
produces more than consumes, it is called an UpSample star. In the preprocessor file, we define a
method readTypeName, as shown below:

method {
name { readTypeName }
access { public }
type { "const char *" }
code { return "UpSample"; }

}

The examples of UpSample type stars are Repeater and DownCounter. The Repeater star

Document version 1.2 12/10/92

CG-DDF Domain 10-4

has two inputs. One input receives a control value specifying how many times the star repeats
the value of the other input to the output. The DownCounter star receives a positive integer from
the input and produces down-counted values to the output. The number of tokens produced from
both stars is data-dependent. On the other hand, we can design a DownSample star that has the
following method:

method {
name { readTypeName }
access { public }
type { "const char *" }
code { return "DownSample"; }

}

One example of DownSample type star is LastOfN. The LastOfN star has two inputs of
which the control input reads the value N. And, the star receives N inputs and send the last input
received to the output. Thus, the number of tokens consumed is data-dependent.

As explained above, all customized CG-DDF stars will be either UpSample type or Down-
Sample type. And, we do not expect that a casual user need to write a new CG-DDF star if we
provide some representative UpSample and DownSample stars. Currently, we haven’t finished
code generation part in this domain. So, the CG-DDF stars are comment generators in this
release.

5. Status
In this release, we include demos showing only the scheduling result, not the generated

code. Code generation part of this domain has not been completed yet.

References
[1] S. Ha, "Compile-Time Scheduling of Dataflow Program Graphs with Dynamic Constructs",

Ph.D. dissertation, U.C.Berkeley, 1992.

Document version 1.2 12/10/92

10-5

CG-DDF Stars
All standard CG-DDF stars do not generate codes in this release. The source code for all

standard CGDDF stars is in $PTOLEMY/src/domains/cg-ddf/stars. By "standard" we mean the
stars that are owned by Ptolemy.

hh

NAME: Case

This star routes an "input" token to one "output" depending on the "control" token.

LOCATION: CGDDF demo library

DOMAIN: CGDDF (DERIVED FROM: CGDDFStar)

VERSION: 1.3 (12/10/92)

AUTHOR: Soonhoi Ha

INPUTS: input (ANYTYPE)
control (int)

OUTPUTS: output (multiple), (ANYTYPE)

hh

NAME: DownCounter

A down counter from the input value to zero.

LOCATION: CGDDF demo library

DOMAIN: CGDDF (DERIVED FROM: CGDDFStar)

VERSION: 1.3 (12/10/92)

AUTHOR: Soonhoi Ha

INPUTS: input (int)

OUTPUTS: output (int)

DESCRIPTION:
This star generates (int-1), (int-2), ... 1,0 samples for (int) input.

hh

NAME: EndCase

Depending on the "control" input, route an "input" to the "output".

LOCATION: CGDDF demo library

DOMAIN: CGDDF (DERIVED FROM: CGDDFStar)

VERSION: 1.3 (12/10/92)

AUTHOR: Soonhoi Ha

INPUTS: input (multiple), (ANYTYPE)
control (int)

OUTPUTS: output (ANYTYPE)

Document version 1.2 12/10/92

CG-DDF Stars 10-6

hh

NAME: Fork

Copies input particles to each output.

LOCATION: CGDDF demo library

DOMAIN: CGDDF (DERIVED FROM: CGDDFStar)

VERSION: 1.3 (12/10/92)

AUTHOR: Soonhoi Ha

INPUTS: input (ANYTYPE)

OUTPUTS: output (multiple), (ANYTYPE)

DESCRIPTION:
This star is generally used to connect a single output port to multiple input ports. It will be

automatically inserted when multiple inputs are connected to the same output using the graphical
interface, or when the "nodeconnect" command is used in the interpreter. However, there are
times when automatically inserted Fork stars are not desirable. For instance, when there is a
delay on one of the arcs, then the Fork must be inserted by the user explicitly to avoid ambiguity
about the location of the delay. Also, when multi-portHoles are used, auto-forking can cause
problems. In this situation, one may get, for example, two outputs and several inputs on the
same net. There is currently no way to automatically decipher what the user intends. Hence, the
Fork star should be inserted explicitly.

hh

NAME: LastOfN

Outputs the last token of N input tokens, where N is the control input.

LOCATION: CGDDF demo library

DOMAIN: CGDDF (DERIVED FROM: CGDDFStar)

VERSION: 1.3 (12/10/92)

AUTHOR: Soonhoi Ha

INPUTS: input (ANYTYPE)
control (int)

OUTPUTS: output (ANYTYPE)

Document version 1.2 12/10/92

CG-DDF Stars 10-7

hh

NAME: Repeater

This star uses the "control" input value to specify how many times to repeat the "input" value on
"output".

LOCATION: CGDDF demo library

DOMAIN: CGDDF (DERIVED FROM: CGDDFStar)

VERSION: 1.3 (12/10/92)

AUTHOR: Soonhoi Ha

INPUTS: input (ANYTYPE)
control (int)

OUTPUTS: output (ANYTYPE)

hh

NAME: Self

Realizes recursion.

LOCATION: CGDDF demo library

DOMAIN: CGDDF (DERIVED FROM: CGDDFStar)

VERSION: 1.3 (12/10/92)

AUTHOR: Soonhoi Ha

INPUTS: input (multiple), (ANYTYPE)

OUTPUTS: output (multiple), (ANYTYPE)

DESCRIPTION:
This is a star for recursion. At runtime, it appears to contain a clone of the galaxy whose

name is given by "recurGal". That galaxy is supplied with the input particles and executed.
That galaxy may be one within which this instance of Self resides, hence realizing recursion. At
compile time, this star appears to just be an atomic star.

SEE ALSO: fibonnacci.

Document version 1.2 12/10/92

10-8

CG-DDF Demos
hh

NAME: demoCase1

Demonstration of the quasi-static scheduler for a graph with a "case" construct.

VERSION: 1.1 (2/6/92)

AUTHOR: S. Ha

LOCATION: ˜ptolemy/src/domains/cg-ddf/demo

DESCRIPTION:
This demo displays a schedule result applying a quasi-static scheduling technique to a pro-

gram graph with a case construct. Since there are two inputs to the Case star, this case con-
struct is nothing but an if-then-else construct. By setting the target parameter of the CG-DDF
domain inside the CGWormhole (green block at the top level), we indicate that it is a case con-
struct (constructType = case) with the probability 0.5 to select the "TRUE" branch (
paramType = geometric, and paramGeo = 0.5). Since the fixedNum state is 0, we let the
scheduler decide the number of processors to assign to the case construct.

The CG-DDF galaxy contains two wormholes which contain CG domains inside to
represent the "TRUE" and the "FALSE" branches. The outside CG domain and these inner CG
domains share the same child targets by setting inheritProcessors target parameter
"YES" in the inner targets. The quasi-static scheduling idea is that we fix the assignment and the
execution order of stars in the CG targets at the compile time. At the top level, the "case" con-
struct is regarded as an atomic block. The blocks inside the "TRUE" and the "FALSE" branches
are also scheduled (assigned and ordered) at compile-time. At run time, based on the control
value to the Case star, we either execute the TRUE branch or the FALSE branch.

The core of the scheduling technique is to determine the assumed execution profile of the
"if-then-else" construct at compile-time, based on the probability of the "TRUE" branch being
taken, In the displayed Gantt chart we can find out what is the estimated profile of the construct.
The construct is assigned to three processors among four processors. Schedules of the "TRUE"
and "FALSE" branches are not displayed. Note that we pipeline the program graph by inserting
delays on a cutset manually to increase the possibility of parallelism. In this release we do not
make code generation working yet.

hh

NAME: demoDo1

Demonstration of the quasi-static scheduler for a graph with a "do-while" construct.

VERSION: 1.1 (2/6/92)

AUTHOR: S. Ha

Document version 1.2 12/10/92

CG-DDF Demos 10-9

LOCATION: ˜ptolemy/src/domains/cg-ddf/demo

DESCRIPTION:
This demo displays a schedule result applying a quasi-static scheduling technique to a pro-

gram graph with a do-while construct. A do-while construct, which resides in a CGWormhole,
consists of a EndCase star at the front, Case star at the back, and a wormhole that represents
a loop-body. The control value to the Case star is generated from the loop-body, which
decides whether to execute the loop-body once more or quit. The number of iteration cycles of
the do-while loop is, therefore, data-dependent

By setting the target parameter of the CG-DDF domain inside the CGWormhole (green
block at the top level), we indicate that it is a do-while construct (constructType =
dowhile) and the number of iteration cycles is distributed geometrically (paramType =
geometric) with a constant 0.7 (paramGeo = 0.7). The probability of doing one more itera-
tion is 0.7 after finishing the current iteration cycle. Since the fixedNum state is 0, we let the
scheduler decide the number of processors to assign to the for construct.

The CG-DDF galaxy contains a wormhole of CG domain to represent the body of the loop.
The outside CG domain and this inner CG domain share the same child targets by setting
inheritProcessors target parameter "YES" in the inner target. The quasi-static scheduling
idea is that we fix the assignment and the execution order of stars in the CG targets at the com-
pile time. At the top level, the "do-while" construct is regarded as an atomic block. The blocks
inside the loop-body are also scheduled (assigned and ordered) at compile-time. At run time, we
execute the loop-body as many times as the termination condition fails.

The core of the scheduling technique is to determine the assumed execution profile of the
do-while construct at compile-time, based on the distribution of the number of iteration cycles.
In the displayed Gantt chart, we can find out what is the estimated profile of the construct. The
construct is assigned to 2 processors among 4. Unlike the "for" construct, in the "do-while" loop,
intercycle parallelism does not exist. The assumed number of iteration cycles is 2 in this case.
Note that we pipeline the program graph by inserting delays on a cutset manually to increase the
possibility of parallelism. In this release we do not make code generation working properly yet.

hh

NAME: demoFor1

Demonstration of the quasi-static scheduler for a graph with a "for" construct.

VERSION: 1.1 (2/6/92)

AUTHOR: S. Ha

LOCATION: ˜ptolemy/src/domains/cg-ddf/demo

DESCRIPTION:
This demo displays a schedule result applying a quasi-static scheduling technique to a pro-

gram graph with a for construct. A for construct, which resides in a CGWormhole, consists of a
Repeater star at the front, LastOfN star at the back, and a wormhole that represents a loop-
body. The number of iteration cycles of the for loop depends on the control input to the
Repeater star. By setting the target parameter of the CG-DDF domain inside the
CGWormhole (green block at the top level), we indicate that it is a for construct (

Document version 1.2 12/10/92

CG-DDF Demos 10-10

constructType = for) and the number of iteration cycles is distributed uniformly (
paramType = uniform) from 1 to 15 (paramMin = 1, paramMax = 15). Since the
fixedNum state is 0, we let the scheduler decide the number of processors to assign to the for
construct.

The CG-DDF galaxy contains a wormhole of CG domain to represent the body of the loop.
The outside CG domain and this inner CG domain share the same child targets by setting
inheritProcessors target parameter "YES" in the inner target. The quasi-static scheduling
idea is that we fix the assignment and the execution order of stars in the CG targets at the com-
pile time. At the top level, the "for" construct is regarded as an atomic block. The blocks inside
the loop-body are also scheduled (assigned and ordered) at compile-time. At run time, we exe-
cute the loop-body as many times as the control value that is fed to the Repeater star.

The core of the scheduling technique is to determine the assumed execution profile of the
for construct at compile-time, based on the distribution of the number of iteration cycles. In the
displayed Gantt chart, we can find out what is the estimated profile of the construct. The con-
struct is assigned to all four processors. Each loop-body is executed in a single processor, and
four loops are parallelized since the loop-body does not possess any intercycle dependency. The
assumed execution times on the processors are not the same on the assigned processors since the
assumed number of iteration cycles is 3 (or 7) in this case. Note that we pipeline the program
graph by inserting delays on a cutset manually to increase the possibility of parallelism. In this
release we do not make code generation working properly yet.

hh

NAME: demoRecur1

Demonstration of the quasi-static scheduler for a graph with a "recursion" construct.

VERSION: 1.1 (2/6/92)

AUTHOR: S. Ha

LOCATION: ˜ptolemy/src/domains/cg-ddf/demo

DESCRIPTION:
This demo displays a schedule result applying a quasi-static scheduling technique to a pro-

gram graph with a recursion construct. A recursion construct, which resides in a CGWormhole,
contains two Self stars, which will be expanded as the same recursion construct if executed.
The control input to the Case star decides whether to execute Self stars. If the Self stars
are not executed, the recursion construct at that level is terminated. The recursion body resides
in the CGDDF wormholes, 5 and 6. Since there are two Self stars, the number of execution of
the recursion body grows exponentially as the depth of the recursion. Therefore, the recursion
construct is highly parallelizable.

By setting the target parameter of the CG-DDF domain inside the CGWormhole (green
block at the top level), we indicate that it is a recursion construct (constructType = recur)
and the depth of recursion is distributed uniformly (paramType = uniform) from 1 to 4 (
paramMin = 1, paramMax = 4). By regarding the depth of recursion as the parameter for the
distribution of the run-time behavior, we approximate the situation that all recursion branches
are identically distributed, or all synchronized (have the same termination condition). Since the
fixedNum state is 0, we let the scheduler decide the number of processors to assign to the

Document version 1.2 12/10/92

CG-DDF Demos 10-11

recursion construct.

The CG-DDF galaxy contains wormholes of CG domain that share the same child targets
as the outside CG domain by setting inheritProcessors target parameter "YES". The
quasi-static scheduling idea is that we fix the assignment and the execution order of stars in the
CG domains at the compile time. At the top level, the "recursion" construct is regarded as an
atomic block. The blocks inside the CGDDF wormholes of CG domain are also scheduled
(assigned and ordered) at compile-time. At run time, we determine which wormholes to execute
depending on the control value fed to the Case star.

The core of the scheduling technique is to determine the assumed execution profile of the
recursion construct at compile-time, based on the distribution of the depth of recursion. In the
displayed Gantt chart, we can find out what is the estimated profile of the construct. The con-
struct is assigned to four processors among 5 processors. Each recursion body is executed in a
single processor, and four recursion branches are parallelized. Once all four recursion branches
are parallelized, the corresponding recursion constructs are executed sequentially. Note that we
pipeline the program graph by inserting delays on a cutset manually to increase the possibility of
parallelism. In this release we do not make code generation working properly yet.

Document version 1.2 12/10/92

